Investigation: Create two sets of twenty random numbers stored as data lists.

	another in L2.	
Sketch the scatterplot 💳		
find the correlation		
and draw the regression lin	ne	
Now fill in the blanks:		
I expected a correlation of	•	
The correlation I got	_ may be evidence o	of
a weak	between the tw	o variables.
But it may also simply arise	e from	
even when there is no _		at all between
the two variables.		

We know that sample proportions vary from ______ to _____, and their distribution has a ______ model^{*}. That knowledge allows us to do _______ for proportions. We know that sample ______ vary from sample to sample, also following a Normal model^{*}. Not knowing the _______, though, forces us to use the almost-Normal ______ (with n - 1 degrees of freedom) when we do inference.

The last unit closed with the _______test for ______, allowing us to check for evidence of an association between categorical variables. Our tour of introductory statistics is not complete until we can make inference about associations between ______ variables as well.

If you did the Investigation again using two new lists of random numbers would you expect to get the same regression line? _____ Explain why or why not?

Since we are interested in the association between the two quantitative variables we should focus our attention on the ______ of the regression line. If r = 0, then the slope = ____. Changes in x explain ____ % of the ______ in y.

Comparing results fom the class, we notice vary from sample to sample. Each sample slope, , is an estimate of the true slope, . The sampling distribution of all such slopes follows a Normal model^{*}. However as with means the standard deviation of the sampling distribution is from the data, a , forcing us to use the (with degrees of freedom) when we do inference.

Now look back at 40A Correlation and Regression Review and write a null and alternative hypothesis (notation & words)

H₀:

 H_A :

Write the 3 conditions needed for linear regression: Write the assumptions & conditions for a one sample t-test

C1.	A1.
C2.	C1.
СЗ.	A2.

C2.

Once we check the required assumptions and conditions, we can proceed with inference about slope (association). It is easiest to think about the assumptions and conditions as a combination of those required for regression and inference for means. Let's write them for 40A Correlation & Regression Review problem: We need to check five things:

- 1
- 2
- 3
- 4
- -
- 5

When a hypothesis test indicates that an association exists, you should create a confidence interval for the slope of the true line. The calculator will do most of the work for us. They tricky part is getting the phrasing right: *Slope*: The model suggests that math test scores decrease about 4.5 points for every increase in anxiety level. *Confidence Interval*: I am 95% confident that the mean anxiety level is between ______ and _____. *Confidence Interval for slope*: I am 95% confident that the average math test scores decrease between ______ and _____.

TI 83/84

<u>Hypothesis test for the slope</u>: STAT, arrow to TESTS, select F:LinRegTTest, enter lists, Freq usually leave at 1, to store the equation as a function: VARS, arrow to Y-VARS, ENTER to select Function, and ENTER to select Y₁, highlight calculate, ENTER, use down arrow to scroll through the output.

<u>Confidence interval for the slope</u>: STAT, arrow to TESTS, select G:LinRegTInt, *inputs similar to above*.

TI 89

<u>Hypothesis test for the slope</u>: From the Statistics list editor, press 2nd F1 (F6 Tests), select A:LinRegTTest, enter lists, Freq usually leave at 1, to store the equation as a function press the right arrow key and select a function name, calculate or draw, Enter, use down arrow to scroll through the output.

<u>Confidence interval for the slope</u>: From the Statistics list editor, press 2nd F2 (F7 Ints), select 7:LinRegTInt, *inputs similar to above*.